skip to main content


Search for: All records

Creators/Authors contains: "Jeong, D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The displacement of a suspension of particles by an immiscible fluid in a capillary tube or in porous media is a canonical configuration that finds application in a large number of natural and industrial applications, including water purification, dispersion of colloids and microplastics, coating and functionalization of tubings. The influence of particles dispersed in the fluid on the interfacial dynamics and on the properties of the liquid film left behind remain poorly understood. Here, we study the deposition of a coating film on the walls of a capillary tube induced by the translation of a suspension plug pushed by air. We identify the different deposition regimes as a function of the translation speed of the plug, the particle size, and the volume fraction of the suspension. The thickness of the coating film is characterized, and we show that similarly to dip coating, three coating regimes are observed, liquid only, heterogeneous, and thick films. We also show that, at first order, the thickness of films thicker than the particle diameter can be predicted using the effective viscosity of the suspension. Nevertheless, we also report that for large particles and concentrated suspensions, a shear-induced migration mechanism leads to local variations in volume fraction and modifies the deposited film thickness and composition. 
    more » « less
  2. While the standard, six-parameter, spatially flat ΛCDM model has been highly successful, certain anomalies in the cosmic microwave background bring out a tension between this model and observations. The statistical significance of any one anomaly is small. However, taken together, the presence of two or more of them imply that according to standard inflationary theories we live in quite an exceptional Universe. We revisit the analysis of the PLANCK collaboration using loop quantum cosmology, where an unforeseen interplay between the ultraviolet and the infrared makes the primordial power spectrum scale dependent at very small k. Consequently, we are led to a somewhat different ΛCDM Universe in which anomalies associated with large scale power suppression and the lensing amplitude are both alleviated. The analysis also leads to new predictions for future observations. This article is addressed both to cosmology and loop quantum gravity communities, and we have attempted to make it self-contained. 
    more » « less